Independence number and the number of maximum independent sets in pseudofractal scale-free web and Sierpiński gasket
نویسندگان
چکیده
منابع مشابه
Independence number and the number of maximum independent sets in pseudofractal scale-free web and Sierpiński gasket
As a fundamental subject of theoretical computer science, the maximum independent set (MIS) problem not only is of purely theoretical interest, but also has found wide applications in various fields. However, for a general graph determining the size of a MIS is NP-hard, and exact computation of the number of all MISs is even more difficult. It is thus of significant interest to seek special gra...
متن کاملDomination number and minimum dominating sets in pseudofractal scale-free web and Sierpiński graph
The minimum dominating set (MDS) problem is a fundamental subject of theoretical computer science, and has found vast applications in different areas, including sensor networks, protein interaction networks, and structural controllability. However, the determination of the size of a MDS and the number of all MDSs in a general network is NP-hard, and it thus makes sense to seek particular graphs...
متن کاملon the number of maximum independent sets of graphs
let $g$ be a simple graph. an independent set is a set ofpairwise non-adjacent vertices. the number of vertices in a maximum independent set of $g$ isdenoted by $alpha(g)$. in this paper, we characterize graphs $g$ with $n$ vertices and with maximumnumber of maximum independent sets provided that $alpha(g)leq 2$ or $alpha(g)geq n-3$.
متن کاملTutte polynomial of pseudofractal scale-free web
The Tutte polynomial of a graph is a 2-variable polynomial which is quite important in both combinatorics and statistical physics. It contains various numerical invariants and polynomial invariants ,such as the number of spanning trees,the number of spanning forests , the number of acyclic orientations , the reliability polynomial,chromatic polynomial and flow polynomial . In this paper,we stud...
متن کاملOn the number of maximum independent sets in Doob graphs
The Doob graph D(m,n) is a distance-regular graph with the same parameters as the Hamming graph H(2m+n, 4). The maximum independent sets in the Doob graphs are analogs of the distance-2 MDS codes in the Hamming graphs. We prove that the logarithm of the number of the maximum independent sets in D(m,n) grows as 2(1+o(1)). The main tool for the upper estimation is constructing an injective map fr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 2018
ISSN: 0304-3975
DOI: 10.1016/j.tcs.2018.02.022